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Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent
spatially localized states in a bistable spatially reversible system as the localized structure grows in length by
repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking
terminates once the domain is filled but the details of how this occurs depend critically on the choice of
boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spa-
tially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large
amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-
Hohenberg equation, explains the phenomenon of “snaking without bistability,” recently observed in simula-
tions of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 �2009�.
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I. INTRODUCTION

Recent years have seen rapid developments in the theory
of spatially localized structures in reversible systems in both
one �1–3� and two �4–6� spatial dimensions. These structures
occur in a great variety of physical systems, including non-
linear optics where they are usually referred to as dissipative
solitons, reaction-diffusion systems where they take the form
of spots or ensembles of spots, and convection where they
are called convectons. We refer to a recent special issue of
Chaos �7� for an overview of the subject, including applica-
tions, and to �8� for a discussion of open problems in this
area.

The theory is simplest in one spatial dimension and relies
on the presence of bistability between a trivial state and a
spatially periodic state: on the real line spatially localized
states first appear via a bifurcation from the trivial state and
do so simultaneously with the primary branch of spatially
periodic states. Typically there are two branches of spatially
localized states that are produced, both symmetric under re-
flection x→−x, with either maxima or minima at x=0. In the
following we refer to these states in terms of their spatial
phase �=0, � as L0,�, respectively. These states are distinct
and are not related by symmetry. Both L0,� bifurcate in the
same direction as the periodic states, i.e., subcritically, and
are initially unstable. With decreasing parameter the local-
ized states grow in amplitude but shrink in extent; when the
extent of the localized state approaches one wavelength and
the amplitude reaches that of the competing periodic state the
branch enters the so-called snaking or pinning region and
begins to “snake” back and forth. As this happens the local-
ized state gradually adds rolls, symmetrically on either side,
thereby increasing its length. As a result the localized states
high up the snaking branches resemble the finite amplitude
spatially periodic state over longer and longer lengths. Typi-
cally each snaking branch repeatedly gains and loses stability

via saddle-node bifurcations, producing an infinite multiplic-
ity of coexisting stable states within the pinning region. Sec-
ondary bifurcations to pairs of �unstable� branches of asym-
metric states are found in the vicinity of each saddle node;
these branches resemble “rungs” that connect the two snak-
ing branches and are responsible for the “snakes-and-
ladders” structure of the pinning region �1,4�. The origin and
properties of this behavior are now quite well understood, at
least in variational systems �2,3,9,10�. However, in addition
to these states there are spatially localized states that re-
semble “holes” in a background of otherwise spatially peri-
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FIG. 1. �Color online� �a� Bifurcation diagram showing the
equivalent of homoclinic snaking in the Swift-Hohenberg equation
with b2=1.8 on a periodic domain with period �=62. The snaking
branches L0 and L� emerge from P10 in a secondary bifurcation ���
at small amplitude and terminate on the same branch in a secondary
bifurcation ��� near the saddle node. Other spatially periodic
branches are also present but for clarity are not shown. ��b� and �c��
Sample profiles from the ��=0 and ��=� branches near the upper
end of the snaking branches. ��d� and �e�� Sample profiles from the
�=0 and �=� branches on the lower part of the snaking branches.
In this case the L0 branch connects the �=0 and ��=0 solutions,
and the L� branch connects the �=� and ��=� solutions. After
�12�.
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odic finite amplitude wave trains �11�. These bifurcate from
the vicinity of the saddle-node bifurcation on the branch of
spatially periodic states and are also organized into a pair of
branches with its own snakes-and-ladders structure produced
as the hole deepens and fills with longer and longer sections
of the trivial state.

On an unbounded domain these two pairs of snaking
branches remain distinct. This is not so, however, once the
domain becomes finite �12�. In this case neither set of
branches can snake forever, and the snaking process must
terminate when the width of the localized periodic state ap-
proaches the domain size and likewise for the width of the
localized hole. Thus both pairs of branches must turn over
and exit the snaking region. Typically the two pairs of
branches connect pairwise �Fig. 1� so that the small ampli-
tude �=0 branch now connects to the corresponding branch
of holelike states and likewise for the �=� branch. This
figure, computed for the quadratic-cubic Swift-Hohenberg
equation on a periodic domain of period �=62, shows that
the classic localized states enter the pinning region from
small amplitude on the right and exit this region at large
amplitude toward the left; however, the same figure can also
be viewed as showing that the holelike states enter the snak-

ing region at the top from the left and exit it near the bottom
toward the right. One finds, in addition, that in domains of
finite size, the branches of small amplitude localized states
no longer bifurcate directly from the trivial state but now do
so in a secondary �pitchfork� bifurcation on the primary
branch of periodic states. The finite domain size likewise
affects the bifurcation to the holelike states on the branch of
periodic states: the two branches of holelike states need not
bifurcate together and need not bifurcate from the primary
periodic branch �12�. Thus, depending on the spatial period,
the branches of spatially localized states may or may not
terminate together on a branch of periodic states, and this
branch may or may not be the branch from which these states
bifurcate at small amplitude. However, despite these finite-
size effects the behavior within the snaking region remains
essentially identical to that present on the real line, with the
effects of the finite size confined to the vicinity of the bifur-
cations creating the localized and holelike states in the first
place �12�. Similar observations are made in Ref. �13� as
well. Thus the physical interpretation of the structure of the
snaking region in terms of front pinning �14� remains largely
unchanged.

The above picture, attractive as it is, relies on the use of
spatially periodic boundary conditions �PBCs� to approxi-
mate the real line. A recent study of binary fluid convection
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FIG. 2. Bifurcation diagram showing the equivalent of ho-
moclinic snaking with Neumann boundary conditions on a domain
of length 2L=40. Only even-parity states are shown. Pitchfork bi-
furcations are denoted by �. Solution profiles u�x� at the saddle
nodes �a�–�d� are shown in Fig. 4.
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FIG. 3. Sample large amplitude periodic states u�x� on �a� P6

and �b� P5 with Neumann boundary conditions on a domain of
length 2L=40, both at r=0.
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FIG. 4. Sample two-pulse profiles u�x� at the saddle nodes along the figure-eight isola in Fig. 2.
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in a two-dimensional box with no-slip boundary conditions
on all boundaries �15� reveals behavior that differs qualita-
tively from the above picture: the snaking branches do not
terminate on a branch of periodic states that coexist with the
conduction state and instead evolve continuously into large
amplitude nonperiodic states that fill the box and play the
role of the periodic state present with PBC. These states
typically include a defectlike structure in order to accommo-
date the natural wavelength of the rolls, with additional de-

fectlike structures present at either lateral boundary required
by the no-slip boundary conditions. The authors of Ref. �15�
refer to this situation as “snaking without bistability” since
there is no large amplitude state that exists independently of
the snaking branches.

We use these results to motivate our study in this paper of
the Swift-Hohenberg equation with non-Neumann lateral
boundary conditions. Neumann boundary conditions �NBCs�
are special since problems with NBC on domains of length
2L can be embedded in problems with PBC and period 4L
�16�. Thus the behavior described above for problems with
PBC applies equally to problems with NBC. Consequently,
we focus here on the effects of a generalization of Neumann
boundary conditions referred to as Robin boundary condi-
tions �RBCs�. It should be emphasized that the change from
Neumann to non-Neumann boundary conditions has a pro-
found effect already on the linear stability problem. In the
former case the null eigenfunctions �critical modes� are sinu-
soidal, with well-defined mode number n. The branches that
bifurcate into the nonlinear regime preserve this mode num-
ber, and in the following we refer to them as Pn. Moreover,
as L increases the neutral curves corresponding to
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FIG. 5. �Color online� Neutral curves for �a� �=0 and
�b� �=0.5 corresponding to even �red solid� and odd �blue dashed�
eigenfunctions.
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FIG. 6. Bifurcation diagram showing the equivalent of ho-
moclinic snaking with Robin boundary conditions �2� and �=0.5 on
a domain of length 2L=40. Only the �=0 branch S6,0 is shown.
Solution profiles u�x�, at the labeled points, are shown in Fig. 8.
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FIG. 7. �Color online� �a� With Robin boundary condition �2� the bifurcation at S6 becomes transcritical �solid dot�: the �=� branch S6,�

now bifurcates supercritically but undergoes a saddle-node bifurcation close to threshold before turning toward negative values of r, while
S6,0 bifurcates subcritically. Thus the breaking of the hidden reflection symmetry results in an apparent splitting of the P6 branch. �b� The
same but on a larger scale, showing S6,0 �dashed green� and S6,� �solid red� together with the two branches that become disconnected from
them as a result of the broken hidden symmetry. Parameters: �=0.5 and 2L=40.
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n and n+1, say, must cross; the corresponding codimension
two points are key to understanding mode jumping in prob-
lems of this type, i.e., the transitions from one preferred
wave number to another, in the nonlinear regime �17,18�.
With non-Neumann boundary conditions, however, the situ-
ation is quite different. The neutral modes are either odd or
even but have no well-defined wave number. It follows that
when neutral curves corresponding to modes of like parity
�odd-odd or even-even� cross, they generically reconnect
�19�, producing a quite different neutral curve topology. Only
odd-even crossings remain structurally stable. Moreover,
since the bifurcating solutions have no fixed wave number
their structure in the nonlinear regime may gradually evolve
from resembling a solution with n maxima to one with n
+1 maxima, say; no bifurcation is involved and no periodic
solutions are present. It follows that the snaking branches
cannot terminate on a branch of periodic states and another
termination mechanism must be present. The present paper
describes in some detail what happens in this case. The re-
sults are quite general and provide an immediate explanation
of the behavior identified in Ref. �15�. In addition, the results
should apply to any physical system with realistic lateral
boundary conditions and as such should be observable not
only in numerical studies of snaking systems with realistic
lateral boundary conditions but also in experiments.

This paper is organized as follows. In the next section we
summarize briefly the snaking behavior for the Swift-
Hohenberg equation on periodic domains. In Sec. III we in-
troduce a homotopy parameter that allows us to continuously
change the boundary conditions away from Neumann bound-
ary conditions and explore the accompanying changes in the
snaking structure. In Sec. IV we give partial results on other
types of boundary conditions. In Sec. V we relate our find-
ings to earlier work on convection in binary fluid mixtures
with thermally conducting no-slip lateral boundary condi-

tions where snaking without bistability was first identified
�15�.

II. SWIFT-HOHENBERG EQUATION

The Swift-Hohenberg equation describes the formation of
spatially periodic patterns with a finite wave number k0 at
onset. In one spatial dimension the equation takes the form

ut = ru − ��x
2 + k0

2�2u + f�u� . �1�

This equation is variational and hence on finite domains all
solutions approach steady states. In the following we shall be
interested in characterizing such states. The key to the prop-
erties of these states is provided by the invariance of Eq. �1�
under x→−x, u→u, hereafter referred to as reversibility. On
the real line this property is responsible for the presence of a
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FIG. 8. Solution profiles u�x� at successive saddle nodes along the �=0 branch S6,0 from small to large amplitude as indicated in Fig. 6.
The final panel shows the �=0 state at r=0.12997. Parameters: �=0.5 and 2L=40.
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reversible Hopf bifurcation with 1:1 resonance in the linear
stability problem for the trivial solution u=0 in space. Spe-
cifically, at r=0 the �four� spatial eigenvalues are given by
�= � ik0, each with double multiplicity. Moreover, for r�0
these eigenvalues move off the imaginary axis and form a

complex quartet ��= � �ik0� ��−r /2k0�+O�r���, while for
r	0 they also split but remain on the imaginary axis ��
= � �ik0� i��r /2k0�+O�r���. The presence of this bifurca-
tion can in turn be used to show that spatially periodic and
spatially localized states bifurcate simultaneously from u=0
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FIG. 10. Solution profiles u�x� at successive saddle nodes along the S6,� branch in Fig. 9 from small to large amplitude and then back
toward small amplitude along the S7 branch. Parameters: �=0.5 and 2L=40.

HOMOCLINIC SNAKING IN BOUNDED DOMAINS PHYSICAL REVIEW E 80, 026210 �2009�

026210-5



as the bifurcation parameter r is increased through r=0 only
in the so-called subcritical regime �1,10�. The latter undergo
the homoclinic snaking that is of interest in the present paper.

In this paper we consider the case f�u��b2u2−u3, which
is the simplest nonlinearity that produces the bistability cru-
cial for homoclinic snaking. In the following we scale Eq.
�1� such that k0=1 so that the equation is fully parametrized
by r and b2 and explore the case b2=2, focusing on steady
state solutions in finite domains. Throughout we impose
boundary conditions at x= �L and do so in such a way that
the invariance of system �1� under reflections x→−x is pre-
served. In this case general theory �20� guarantees the pres-
ence of nonlinear even-parity solutions. Figure 2 shows sev-
eral branches of such even-parity states with Neumann
boundary conditions at x= �20 or, equivalently, in a periodic
domain with period 4L=80. The figure shows the amplitude
A= 	u	L2 ��1 /2L�−1
−L

L u2�x�dx for two branches, labeled as
P6 �six peaks within the domain� and P5 �five peaks�, both of
which bifurcate from the trivial state u=0; a branch P7 bi-
furcates from u=0 between these two primary branches but
is not shown. Both P6 and P5 bifurcate subcritically and turn
around to larger values of r with increasing amplitude.
Sample large amplitude solutions on these branches are
shown in Fig. 3. The figure also shows a pair of snaking
branches both of which bifurcate from P6 at small amplitude

and terminate back on P6 just below the saddle node. These
correspond to localized structures with maxima ��=0� and
minima ��=�� at x=0, respectively. An isola of two-pulse
homoclinic orbits is also shown, with sample profiles shown
in Fig. 4. These results accord with the results in �12,21,22�.

III. ROBIN BOUNDARY CONDITIONS

In this section we explore the effect of changing the
boundary conditions at x= �L to

ux = � �u, uxxx = 0, �2�

where the parameter � plays the role of a Biot number: the
case �=0 corresponds to the NBC case, while ��0 corre-
sponds to RBC.

A. Numerical method

We solve for steady solutions of Eq. �1�, subject to the
boundary conditions �2�, using the Newton-Raphson-
Kantorovich �NRK� algorithm �23�. This algorithm is highly
efficient for finding the solution to linear and nonlinear prob-
lems. Also, it is straightforward to incorporate the nonstand-
ard boundary conditions as required for this investigation.
We initialize the algorithm with an approximate solution and
then apply NRK to converge to an exact solution of the lin-
ear or nonlinear problem. A parameter in the system is then
slightly altered and NRK used once more to converge to an
exact solution. Repetition of this procedure allows the solu-
tion branches to be traced out. Other numerical algorithms,
for example, AUTO �24�, could also be used. AUTO allows
nonstandard boundary conditions to be specified in the BCND

subroutine so that boundary value problems of this type can
be solved.

B. Linear theory

When �=0 the neutral stability curves for the trivial state
u=0 are given by
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FIG. 12. Solution profiles u�x� at successive saddle nodes along the two-pulse isola in Fig. 11 when �=0.5 and 2L=40.
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rc
even = �1 − �n�

L
2�2

, rc
odd = �1 − � �2n + 1��

2L
2�2

.

�3�

There are two sets of curves corresponding to even
�cos �x /2L� and odd �sin�2n+1��x /2L� eigenfunctions with
well-defined wave numbers specified by integers n=0, . . . as
shown in Fig. 5�a�. As soon as ��0 this picture changes
dramatically, as described in �19� and references therein: the
crossings between even neutral curves breakup, as do the
crossings between odd neutral curves. Only crossings be-
tween opposite parity neutral curves are structurally stable.
The resulting neutral curves are shown in Fig. 5�b� for a
relatively large value of �, �=0.5. The figure shows five
distinct families of neutral curves, each of which consists of
a pair of braided curves, one of which corresponds to even-
parity eigenfunctions �red solid�, while the other corresponds
to odd-parity eigenfunctions �blue dashed�. As a result of the
reconnection between neutral curves corresponding to differ-
ent values of n the neutral curves with RBC are no longer
characterized by a unique mode number, and the mode num-

ber varies continuously along each neutral curve.
The bifurcations to even modes produce branches of

even-parity nonlinear solutions. We construct these solutions
by imposing the boundary conditions

ux = 0, uxxx = 0, �4�

at x=0, and solving for steady solutions on 0
x
L with the
boundary conditions �2,4�, followed by a reflection in x=0:
u�−x�=u�x�. This procedure generates a differentiable solu-
tion on the full domain −L
x
L. However, because of the
quadratic term in the Swift-Hohenberg equation odd-parity
states do not persist into the nonlinear region; these bifurca-
tions produce primary branches of nonsymmetric states, and
these have to be computed on the full domain −L
x
L.
When ��0 none of these solutions is characterized by a
well-defined mode number n, and as a result the dominant
mode number will in general be a function of amplitude or
equivalently of the value of the parameter r.

C. Even-parity states

The bifurcation diagram for the primary even-parity states
is shown in Fig. 6 for �=0.5 and L=20. We refer to this
branch as S6,0 since it starts out looking like a P6 state with
maxima at x=0; like P6 it bifurcates subcritically and starts
to snake but then turns around unexpectedly toward larger
values of r.

To understand this dramatic change in the bifurcation dia-
gram �compare Figs. 2 and 6�, we need to go back to the
primary bifurcation. As already mentioned, with PBC on a
domain with period 4L the primary bifurcation is a pitchfork
of revolution. The imposition of NBC at x= �L selects from
these solutions a pair of solutions. These are related by a
translation present within the PBC formulation; this transla-
tion manifests itself as a “hidden” symmetry within the NBC
case �16� and explains why the solutions in the NBC case
remain sinusoidal with well-defined wave numbers instead of
just being odd or even under reflection in x=0. These obser-
vations also explain why the primary bifurcation is a pitch-
fork even when the solution is even under reflection in x
=0. When � becomes nonzero this hidden symmetry is bro-
ken and the bifurcation becomes generic: bifurcations to odd
solutions �in x=0� remain pitchforks, while the even ones
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�such as S6 and S5� become transcritical, hereafter indicated
by solid dots. Figure 7�a� confirms this expectation, while
Fig. 7�b� shows that the loss of the hidden symmetry also
affects the pitchfork bifurcations at finite amplitude that are
responsible for the appearance of the pair of branches of
localized states in the NBC case: the structure shown evolves
continuously from the pitchfork bifurcations on P6,0 and P6,�
when �=0 as � increases from zero.

As the amplitude of both S6,0 and S6,� increases the solu-
tions begin to resemble more and more the localized states
familiar with Neumann boundary conditions, and both solu-

tion branches begin to snake. Figure 8 shows the states at
successive saddle nodes along the �=0 branch. Except for
the behavior near x= �L we observe classic homoclinic
snaking, with structures added symmetrically on either side
with increasing amplitude, gradually filling the domain.
However, instead of turning over toward smaller values of r
and terminating on a branch of periodic states as in Fig. 2 the
branch turns instead toward larger r and takes the place of
the large amplitude periodic states. The final panel in Fig. 8
shows the resulting large amplitude �=0 state. This state
resembles the defect states identified in �12� that bifurcate
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FIG. 16. Solution profiles u�x� at successive saddle nodes in Fig. 14 �and Fig. 15�, starting from the large amplitude P6 state �a� and
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from the periodic states in Eckhaus or sideband bifurcations:
here the defect takes the form of a hole in an otherwise
almost periodic pattern located at x= �L.

The �=� branch S6,� is shown in Fig. 9. As already men-
tioned this branch bifurcates from S6 initially supercritically
but turns around at small amplitude and then undergoes
many back and forth gyrations before returning to small am-
plitude and terminating at the primary bifurcation point S7.
Thus once ��0 the S6 solutions with minima at x=0 trans-
form continuously into solutions with seven peaks and
maxima at x=0 resembling P7. The details of this transfor-
mation are shown in Fig. 10. We see that the S6,� branch
enters the snaking region at saddle node �a� �Fig. 10�a�� with
two peaks, acquires two additional peaks at saddle node �c�
�Fig. 10�c��, and then fills the domain at saddle node �e� �Fig.
10�e��, where the solution resembles the finite amplitude pe-
riodic P6 state. In between saddle nodes �e� and �f� the
branch develops holes near x= �L before filling them in by
saddle node �i� where it resembles P6 again �Fig. 10�i��. Be-
tween saddle nodes �i� and �j� the solution again develops a
hole, but this time centered on x=0, before undergoing a
large excursion toward small amplitudes that takes it back to
P6 at saddle node �m� �Fig. 10�m��. Beyond this point the
solution develops deep holes near both x=0 and x= �L, and
with decreasing amplitude the central minimum becomes a

maximum and the solution evolves into a S7,0 state with
seven peaks and a maximum at x=0 by the time it reconnects
with the u=0 state at S7.

To complete the picture we show in Fig. 11 the two-pulse
isola computed for �=0.5. The corresponding profiles are
shown in Fig. 12.

To understand how it is possible for a small amplitude
localized �=0 state to turn via snaking into a large ampli-
tude defect state without undergoing any bifurcations at all,
we need to examine the fate of the secondary bifurcations
creating the �=0,� snaking branches when �=0. Both bi-
furcations are pitchforks. This is a consequence of weak spa-
tial resonance �12� and not reflection symmetry and is the
case for the bifurcations from both �=0 and �=� periodic
states. Thus while Fig. 2 shows only one pitchfork bifurca-
tion with two emerging branches, there are in fact two pitch-
forks and four emerging branches and likewise at the termi-
nation points. When ��0 we expect these pitchforks to
become imperfect bifurcations; for given ��0 this effect
should be larger for the small amplitude pitchforks and
smaller for the larger amplitude pitchforks. Moreover, the
universal unfolding of the pitchfork bifurcation �25� reveals
the presence of an additional disconnected branch as well.
The predicted splitting of the termination pitchfork on the
�=� branch is clearly seen in Fig. 9 and manifests itself in
the two distinct hole states created between saddle nodes �e�
and �f� and between �m� and �n� �Fig. 10�. On the other hand
for �=0.5 the break up of the small amplitude pitchfork is
much more substantial, although the saddle node �l� �Figs.
7�b� and 9� and the small oscillation in the S7,0 branch �en-
larged in Fig. 13� are clearly related to the unfolding of a
pitchfork �which for these large values of � involves S7,0
instead of S6,��. The disconnected �=0 branch in Fig. 7�b�
lies on an isola �not shown� that is quite similar to that in
Fig. 11 and the corresponding profiles are similar to those in
Fig. 12 except that they resemble the �=0 seven peak state
instead of the �=� six peak state �not shown�.

Figure 9 shows that the �=� branch originating at S6
does not extend to large amplitude and instead connects to
S7. The reconnection between the S6,� and S7,0 branches in-
dicates that there is a disconnected �=� branch that is miss-
ing from Fig. 9, a conclusion confirmed in Fig. 14. Figures
15 and 16 provide details of the transition from large to small
amplitude behavior along this branch. We see that this
branch likewise undergoes numerous saddle-node bifurca-
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tions within the original snaking region before terminating
on u=0 at a subsequent primary bifurcation. During this
transition the solution changes continuously from essentially
P6 at large amplitude �Fig. 16�a�� to essentially P5 �Fig.
16�M��; in between we observe the development of very
clear holelike states �Figs. 16�f� and 16�v�� and the gradual
filling in of the hole as one proceeds down the branch �e.g.,
Fig. 16�x��. Such states are expected as a result of the split-
ting of the branches of holelike states near the saddle node
on P6 and their reconnection with the original P6 branch
when ��0.

D. Nonsymmetric states

The linear stability problem shows that the trivial state
u=0 loses stability to both even and odd modes. Thus far we
have discussed the nonlinear states associated with even
eigenfunctions. In this section we turn to the states associ-
ated with odd eigenfunctions. Since Eq. �1� does not admit
odd-parity solutions such eigenfunctions must produce non-
symmetric states in the nonlinear regime.

Figure 17 shows the first branch of nonsymmetric states
when �=0 and L=20. This branch, hereafter A6, consists of
spatially extended states that are almost antisymmetric with
respect to a nonzero mean �Fig. 18� and precedes the first
primary bifurcation to an even-parity state �Fig. 5�a��. Spa-
tially localized states �Fig. 19� are also present but are con-
fined to a stack of figure-eight isolas of which only the low-
est is shown in Fig. 17. Since the figure is computed with
NBC ��=0� the associated localized profiles can be reflected
in the boundary at x=−L or x=L without generating a non-
differentiable state. Such states therefore solve the PBC
problem and evidently correspond to two-pulse states on a
periodic domain of period 4L. On the real line the resulting
replicated state consists of a train of pulses with alternating
separations d1 and d2, with d1�d2. For the Swift-Hohenberg
equation with PBC states of this type are well known, and it
is known that such states lie on figure-eight isolas whenever
d1�d2 �22�.

When �=0.5 and L=20 the bifurcation to the nonsym-
metric states A6 in Fig. 20 also precedes the first bifurcation
to even-parity states �Fig. 5�b��. The figure shows that A6
bifurcates subcritically, enters the snaking region, and starts
to snake toward larger amplitude but turns around immedi-
ately to form a figure-eight structure characteristic of two-

pulse states �Fig. 17�. It then continues upwards along the
snaking structure taking in all the rung states �after all, this is
a branch of nonsymmetric states� before turning around at
the top and descending again. The net effect is that the same
branch follows all parts of the snake-and-ladders structure of
the pinning region. Once it reaches the bottom it describes a
new and distinct figure-eight structure and then heads once
again up the snaking structure. Apparently this process re-
peats a number of times, and the distinct braids created in
this manner correspond to slightly different locations of the
dominant peaks in the solution profile. The inset shows, as
expected, that there are no secondary bifurcations respon-
sible for the creation of localized states although there are in
fact five saddle nodes in this region, two of which arise from
the unfolding of the pitchfork bifurcations that are present in
this region with NBC. Three of the curves shown in the inset
come from the reconnection of the primary branch with dis-
tinct two-pulse isolas in the NBC case such as the one shown
in Fig. 17. Figure 21 shows the solution profiles at the saddle
nodes in this region; if reflected in x=L the first three of
these generate distinct two-pulse states on an approximately
periodic domain of length 4L, i.e., two-pulse states with dif-
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FIG. 19. Solution profiles u�x� at each of the saddle nodes on the figure-eight isola shown in Fig. 17.
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ferent separations between the two dominant peaks.
In Fig. 22 we show the branch A5 that bifurcates from u

=0 at a larger value of r. We see that this branch also bifur-
cates subcritically, enters the snaking region, and follows
some of the rung states to large amplitude. However, this
time the branch terminates at finite amplitude on an even-
parity branch, the branch S5,0. Figure 23 shows the evolution
of the solution profiles, starting at small amplitude �top left
panel� where the solution is almost exactly antisymmetric
and ending on the even-parity branch S5,0. The figure shows
that as the amplitude increases the degree of asymmetry
gradually decreases, allowing the initially odd-parity state to
terminate in an even-parity state. The process whereby this
happens is related to the orientation-turning states that are
generated in other problems of this type through the breaking
of a reflection symmetry. In �26� such states are produced by
perturbing the symmetry O�2� of a circular domain to the
symmetry Z2�Z2 of an elliptical domain. In the present
problem the PBC problem also has O�2� symmetry, and this
symmetry is broken by the use of RBC leaving a Z2 symmet-
ric problem.

IV. OTHER BOUNDARY CONDITIONS

The boundary conditions �2� at x=L and �4� at x=0 also
reduce to Neumann boundary conditions when �=0. Even
parity ��0 can therefore be related to the solutions of the
corresponding PBC problem with spatial period 4L by exam-
ining in detail the effect of breaking the hidden symmetry
that is present when �=0 and that is responsible for the
nongeneric behavior of even states in this type of problem. In
this section we examine what happens with other boundary
conditions, and in particular with boundary conditions that
are “far” from the NBC case. To this end we choose the
boundary conditions

ux = uxxx = 0 at x = 0,

ux − �u = uxx = 0 at x = L , �5�

and focus on even solutions only. Figure 24 shows the bifur-
cation diagram when �a� �=0, L=35, �b� �=1, L=35, and
�c� �=1, L=40.

This type of structure persists for larger � values as well.
Figure 25�a� shows the bifurcation diagram for �=10. Only
the �=0 branch is shown; the �=� branch is shown in Fig.
25�b�. Observe that, as in earlier cases, the �=0 branch
snakes toward large amplitude before snaking back down,
and almost reaching zero amplitude, before returning to large
amplitudes and exiting the snaking region toward large r.
Once again, many of the features of this bifurcation diagram
can be understood as the result of the unfolding of the pitch-
fork bifurcations at the beginning and end of the snaking
branches, as well as those responsible for the rungs in the
snakes-and-ladders structure of the pinning region. Note,
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FIG. 21. Solution profiles u�x� at the five saddle nodes visible �right to left� in the inset in Fig. 20. The first three are related to distinct
two-pulse states present with NBC.
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however, that the solutions corresponding to the rungs are
now symmetric with respect to x=0. In contrast, the �=�
branch forms an isola: the branch is disconnected from both
the u=0 state and no longer extends to large amplitude. Note
that the pair of saddle nodes where the branch might be
expected to connect to a periodic state �top left in Fig. 25�b��
is of the type expected from the breakup of a pitchfork bi-
furcation �25�. Sample �=0 solution profiles are shown in
Fig. 26; the two-pulse profiles correspond to either end of the
first rung state �in the direction of increasing amplitude� and
form when the snaking branch reconnects with a two-pulse
isola. There is another �=� branch as well. This branch

bifurcates from the trivial state at the same location as the
�=0 branch and does extend to large amplitude at large r
�not shown�.

It appears that much of the structure of the bifurcation
diagrams visible at large amplitude is due to the choice of the
domain length 2L and its commensurability with the basic
wavelength �=2� selected by the linear operator. For ex-
ample, when L=40 this structure is absent �Fig. 24�c��.

V. DISCUSSION AND CONCLUSIONS

In this paper we have examined the phenomenon of ho-
moclinic snaking in the presence of realistic boundary con-
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FIG. 23. Solution profiles u�x� at successive saddle nodes in Fig. 22 starting near the first bifurcation and ending at the termination of A5

on the even-parity branch S5,0.
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ditions. Existing studies of homoclinic snaking employ peri-
odic boundary conditions with a large spatial period to model
problems on the real line. Provided the localized structures
that are of interest do not fill the domain �i.e., provided they
do not approach to within half a wavelength of the imposed
boundaries on either side� the presence of boundaries has a
small effect on the behavior of the solutions. In a recent
paper Bergeon et al. �12� have examined the consequences of
breaching this requirement. This occurs close to the primary
bifurcation to localized states since the corresponding eigen-
function takes the form of a periodic wave train modulated
on a long scale and again at large amplitude when the do-
main is filled with the structured state. In either case snaking
must terminate and Bergeon et al. explore in detail the pro-
cess by which this happens �see also �13��. Within the Swift-
Hohenberg equation the snaking branches always terminate
on one of the branches of spatially periodic states and do so
near a saddle-node bifurcation.

In this paper we have shown that this scenario changes
fundamentally when periodic or Neumann boundary condi-
tions are changed to Robin boundary conditions. These
boundary conditions eliminate the large amplitude spatially
periodic states, whose role is taken by states that necessarily
include defectlike structures near either boundary. In fact
there are two branches of such states distinguished by their
spatial phase � since the boundary conditions split the
branch of periodic states satisfying Neumann boundary con-
ditions. In addition, the �=0, � snaking branches now bifur-
cate directly from u=0 and no longer at small amplitude no
longer terminate at secondary bifurcations. Instead, one of
these, typically the first one, develops smoothly and continu-
ously into a large amplitude branch with the corresponding
spatial phase, while the second snaking branch instead turns
over toward smaller amplitude and reconnects with the
trivial state u=0 in a subsequent primary bifurcation also
split by the boundary conditions. There is in addition a sec-
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ond large amplitude defect branch, which may reconnect
with subsequent large amplitude branches, remaining discon-
nected from the trivial state. The entire scenario may be
viewed as the result of a perturbation of the secondary pitch-
fork bifurcations �here a consequence of hidden symmetry
associated with Neumann boundary conditions �16�� termi-
nating the snaking branches in the NBC case into imperfect
bifurcations when the boundary conditions are perturbed to
Robin boundary conditions, together with the associated
splitting of branches of periodic states. Of course, with in-
creasing departure from the Neumann boundary conditions
the details of the required branch reconnections become
more and more difficult to discern, as found in other prob-
lems of this type �26,27�.

We have demonstrated these results here by explicit com-
putations on the so-called 23 Swift-Hohenberg equation and
showed that despite the complexity of the resulting bifurca-
tion diagrams much of the phenomenology of these diagrams
can be understood as the result of the splitting of various
secondary bifurcations �those originating and terminating the
snaking branches as well as the pitchfork bifurcations on the
snaking branches responsible for the asymmetric states that
form the rungs of the snakes-and-ladders structure of the
snaking region�. In general such splitting is a consequence of
imperfect bifurcations, but if organized by the underlying
snaking structure it can result in a stack of isolas �as is the
case for two-pulse states, where the imperfection is the result
of unequally spaced pulses� or a braided structure generated
by a broken hidden symmetry as in Fig. 20. Both possibili-
ties are discussed in �22�.

We mention here that snaking branches may turn into
large amplitude defect states even in the presence of periodic
boundary conditions. This occurs, for example, in natural
doubly diffusive convection �Fig. 27 of �12��, where, in cer-
tain special parameter ranges, the snaking branch does not
terminate on a branch of periodic states but instead exits the
snaking region toward larger values of the bifurcation pa-
rameter, apparently continuing to larger and larger ampli-
tudes. The solutions on this branch take the form of a peri-

odic structure with a defect that is apparently required in
order to fit the periodic structure into the imposed spatial
period. In this case it is apparently “cheaper” to include a
defect in the structure than to change the wavelength of the
structure throughout the domain. In this case, however, the
defect state coexists with a branch of large amplitude peri-
odic states.

Although we have not computed the stability properties of
all the solutions reported here, we have checked that at suc-
cessive saddle nodes a single eigenvalue passes repeatedly
through zero. As a result we expect that positively sloping
branches will be stable, as established in detail in �1�, and
have checked this stability prediction in specific cases by
explicit eigenvalue computation and direct integration in
time.

It should be emphasized that the effect of RBC is not
confined to the elimination of the periodic states and their
replacement at large amplitude by the defect states which
connect continuously to the snaking branches. We have al-
ready noted the splitting of the primary branches and the
associated connections between distinct primary bifurca-
tions. But the RBC are also responsible for reconnections
within the original snaking region that produce branches
which follow the original snaking structure up and down
several times before exiting the snaking region. This far-
reaching effect of even distant boundaries is unexpected and
indicates that substantial care is required to model correctly
given physical systems; see also �28�.

It is interesting to examine the behavior identified here in
connection with more realistic systems which exhibit behav-
ior that appears to be related. As an example we take natural
doubly diffusive convection in a two-dimensional vertical
rectangular cavity with no-slip boundary conditions on all
boundaries and imposed horizontal temperature and concen-
tration gradients �29�. In this paper Ghorayeb and Mojtabi
find a number of states resembling those identified here for
the Swift-Hohenberg equation with Robin boundary condi-
tions. These include localized cells in the center of the con-
tainer but also localized cells near one boundary or at both

-0.5

0.0

0.5

1.0

1.5

-30 -20 -10 0 10 20 30
u
(x

)
x

(a)

-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

-30 -20 -10 0 10 20 30

u
(x

)

x

(b)

-0.5

0.0

0.5

1.0

1.5

-30 -20 -10 0 10 20 30

u
(x

)

x

(c)

-0.5

0.0

0.5

1.0

1.5

2.0

-30 -20 -10 0 10 20 30

u
(x

)

x

(d)

-1.0

-0.5

0.0

0.5

1.0

1.5

-30 -20 -10 0 10 20 30

u
(x

)

x

(e)

FIG. 26. Solution profiles u�x� for the boundary conditions �5� with �=10 and L=35 at the saddle nodes indicated in Fig. 25�a�.
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boundaries. We believe that these states can be understood as
the result of broken hidden symmetry that is present with
NBC and hence as a “perturbation” of the snaking structure
that is known to be present in this system in the presence of
PBC in the vertical direction �30�. Similar structures have
also been identified in a related system with an imposed
horizontal concentration gradient driven by an imposed ver-
tical temperature gradient �31,32�.

Binary fluid convection with negative separation ratio
promises to provide another potential application. This sys-
tem develops a competing concentration gradient in response
to an applied vertical destabilizing temperature gradient and
also exhibits homoclinic snaking �33�. However, in contrast
to the Swift-Hohenberg equation this system admits a second
reflection symmetry, in addition to spatial reversibility in the
horizontal direction. As a result the snaking region consists
of four branches, two of which involve even-parity states and

two of which involve odd-parity states. Despite this impor-
tant difference, when the problem is posed on a finite domain
with non-Neumann boundary conditions �thermally conduct-
ing no-slip lateral boundaries� computations reveal a con-
tinuous transition from a small amplitude state, via snaking,
to a large amplitude defect state �15�, much as found here for
the Swift-Hohenberg equation �Fig. 6�. This is the case for
both even and odd states, and we surmise that the origin of
this behavior is similar.
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